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Abstract

We show that the Erdős-Rado conjecture implies a conjecture, which is implied in a question by Gil
Kalai, for large n. More generally, we show f(k, r,m, n) ≤ 10f(k, r)3

(
n−m
k−m

)
for n � k.

A r-sunflower is a family of sets A1, A2, . . . , Ar such that every element that belongs to more than one of
the sets belongs to all of them. For a given family Y of sets and a set S, the star Z of Y is the subfamily of
sets of Y , which contain S. We call the common elements to all elements of Y head of Y . If H is the head of
Y , then link of S is the set {z \H : z ∈ Z}.

A family of k-sets satisfies property P (k, r,m) if it contains no sunflower with a head of size at most m− 1.
Let f(k, r,m, n) the size of a largest family of k-sets in {1, 2, . . . , n} with property P (k, r,m). We denote
limn→∞ f(k, r, k, n) by f(k, r). A family of k-sets satisfies property Q(k, r,m) if it satisfies property P (k, r,m)
and if for all sets S of size at least m the link Y ′ of Y with respect to S has property P (k − |S|, 2, k− |S|) (i.e.
we forbid intersection in at least m elements in Y ). Let g(k, r,m, n) be the size of a largest family of k-sets with
property Q(k, r,m). Notice that g(k, r, k, n) = f(k, r, k, n) ≤ f(k, r). If a family Y of k-sets in {1, 2, . . . , n}
satisfies property P and there exists no family Y ′ of k-sets in {1, 2, . . . , n} satisfying property P with Y ( Y ′,
then we say that Y is a maximal family satisfying property P .

Conjecture 1 (Erdos-Rado Conjecture). For all r there exists a constant Cr such that

f(k, r) ≤ Ck
r .

In his first blog post1 on the 10th POLYMATH project Gil Kalai asked several questions. Kalai’s second
question suggests the following conjecture.

Conjecture 2. For all r there exists a constant Cr such that

f(k, r,m, n) ≤ Ck
r

(
n−m

k −m

)
.

This short note shows the following.

Theorem 3. Let k, r,m, n be nonnegative integers such that 0 ≤ m ≤ k and n ≥ m(k −m)
(
2k−m
m+1

)
+ m. We

have

f(k, r,m, n) ≤ 10g(k, r,m, n)3
(
n−m

k −m

)
≤ 10f(k, r)3

(
n−m

k −m

)
.

Proposition 4. Let Y be a family of k-sets of {1, 2, . . . , n} with property P (k, r,m) and n ≥ m(k−m)
(
2k−m
m+1

)
+

m. Let Y0 be a subset of Y , which is a maximal family satisfying property Q(k, r,m). Define Y1 by

Y1 = {y ∈ Y : ex. z1, z2 ∈ Y0 with |y ∩ (z1 ∪ z2)| > m}.

Let Y2 = Y \ (Y0 ∪ Y1). Then the following holds:

(a) |Y0| ≤ g(k, r,m, n).

(b) |Y1| ≤ g(k, r,m, n)2
(
n−m
k−m

)
,

1https://gilkalai.wordpress.com/2015/11/03/polymath10-the-erdos-rado-delta-system-conjecture/
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(c) For all y ∈ Y2 there exist a z ∈ Y0 such that |y ∩ z| = m.

Proof. Claim (a) is trivial.
We have |Y0|2 possibilities for choosing z1, z2 ∈ Y0. At most

(
2k

m+1

)(
n−m−1
k−m−1

)
sets y with k elements satisfy

|y ∩ (z1 ∪ z2)| > m. For n ≥ (k −m)
(

2k
m+1

)
+ m we have(

2k

m + 1

)(
n−m− 1

k −m− 1

)
≤
(
n−m

k −m

)
,

so (b) follows.
Now let y ∈ Y2.
If for all z ∈ Y0 we have |y ∩ z| < m, then Y0 ∪ {y} has property Q(k, r,m) (as Y has property P (k, r,m)).

This contradicts the maximality of Y0. Hence, we find a z ∈ Y0 with |y ∩ z| ≥ m. If |y ∩ z| > m, then y ∈ Y1,
so |y ∩ z| = m. Hence, (c) follows.

Proof of Theorem 3. Let Y be a family of k-sets of {1, 2, . . . , n} with property P (k, r,m) as in Proposition 4.
Define Y0, Y1, Y2 as in Proposition 4.

For z ∈ Y0 let Zz be the set of elements of Y2, which meet z in m elements. As Zz satisfies property
P (k, r,m), we can choose Zz

0 ⊆ Zz as a maximal family satisfying property Q(k, r, k). Define Zz
1 by

Zz
1 = {y ∈ Zz : ex. z1, z2 ∈ Zz

0 with |y ∩ (z1 ∪ z2)| > m},

and Zz
2 as Z \ (Zz

0 ∪ Zz
1 ). By Proposition 4 (a) and (b) we obtain

|Zz
0 | ≤ g(k, r,m, n), |Zz

1 | ≤ g(k, r,m, n)2
(
n−m

k −m

)
.

Let z′ ∈ Zz
0 . Let Zz,z′

be the set of elements of Zz
2 , which meet z′ in exactly m elements. As Zz,z′ ⊆ Zz,

all y ∈ Zz,z′
meet z and z′ in m elements. As z′ ∈ Zz, |z ∩ z′| = m. Hence, if |y ∩ z ∩ z′| = i, then

|y ∩ (z 4 z′)| = 2(m − i). For given intersections of y with z ∩ z′ and z 4 z′, we have
(
n−2k+m
k−2m+i

)
choices for y

left. Hence,

|Zz,z′
| ≤

m∑
i=0

(
m

i

)(
2(k −m)

2(m− i)

)(
n− 2k + m

k − 2m + i

)

=

(
n−m

k −m

)
+

m−1∑
i=0

(
m

i

)(
2(k −m)

2(m− i)

)(
n− 2k + m

k − 2m + i

)
≤
(
n−m

k −m

)
+ m

(
2k −m

m + 1

)(
n−m− 1

k −m− 1

)
≤ 2

(
n−m

k −m

)
for n ≥ m(k −m)

(
2k−m
m+1

)
+ m.

We obtain

|Zz| = |Zz
0 |+ |Zz

1 |+ |Zz
2 |

≤ |Zz
0 |+ |Zz

0 |2
(
n−m

k −m

)
+ |Zz

0 | · 2
(
n−m

k −m

)
≤ g(k, r,m, n)

(
1 + (g(k, r,m, n) + 2)

(
n−m

k −m

))
.

Hence,

|Y | = |Y0|+ |Y1|+ |Y2|

≤ |Y0|+ |Y0|2
(
n−m

k −m

)
+ |Y0| · g(k, r,m, n)

(
1 + (g(k, r,m, n) + 2)

(
n−m

k −m

))
≤ 10g(k, r,m, n)3

(
n−m

k −m

)
≤ 10f(k, r)3

(
n−m

k −m

)
.

2



Corollary 5. If the Erdős-Rado Conjecture is true, then Conjecture 2 is true for n ≥ m(k −m)
(
2k−m
m+1

)
+ m.

Proof. If the Erdős-Rado conjecture is true, then for all r there exists a constant Cr such that f(k, r) ≤ Ck
r .

Let C ′r = 10C3
r . By Proposition 4,

f(k, r,m, n) ≤ 10f(k, r)3
(
n−m

k −m

)
≤ 10(C3

r )k
(
n−m

k −m

)
≤ 10(C ′r/10)k

(
n−m

k −m

)
≤ C ′kr

(
n−m

k −m

)
.

Remark 6. 1. It should be easy to improve many constants in the result.

2. I believe that very similar arguments should establish inequalities between f(k, r,m, n) and f(k, r,m′, n)
(instead of f(k, r, k, n)).

3. Considering g(k, r,m, n) on its own might be interesting.

4. The argument is for large n. I would guess that simple arguments can extend the main result to something
like n ≥

(
2k−m
m+1

)
. Anything beyond that would be very interesting.
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