The Erdos-Rado Conjecture Implies Kalai's Second Question

Ferdinand Ihringer

January 8, 2016

Abstract

We show that the Erdős-Rado conjecture implies a conjecture, which is implied in a question by Gil Kalai, for large *n*. More generally, we show $f(k, r, m, n) \leq 10 f(k, r)^3 {n-m \choose k-m}$ for $n \gg k$.

A r-sunflower is a family of sets A_1, A_2, \ldots, A_r such that every element that belongs to more than one of the sets belongs to all of them. For a given family Y of sets and a set S , the star Z of Y is the subfamily of sets of Y, which contain S. We call the common elements to all elements of Y head of Y. If H is the head of Y, then link of S is the set $\{z \setminus H : z \in Z\}.$

A family of k-sets satisfies property $P(k, r, m)$ if it contains no sunflower with a head of size at most $m - 1$. Let $f(k, r, m, n)$ the size of a largest family of k-sets in $\{1, 2, \ldots, n\}$ with property $P(k, r, m)$. We denote $\lim_{n\to\infty} f(k, r, k, n)$ by $f(k, r)$. A family of k-sets satisfies property $Q(k, r, m)$ if it satisfies property $P(k, r, m)$ and if for all sets S of size at least m the link Y' of Y with respect to S has property $P(k-|S|, 2, k-|S|)$ (i.e. we forbid intersection in at least m elements in Y). Let $g(k, r, m, n)$ be the size of a largest family of k-sets with property $Q(k, r, m)$. Notice that $g(k, r, k, n) = f(k, r, k, n) \leq f(k, r)$. If a family Y of k-sets in $\{1, 2, ..., n\}$ satisfies property P and there exists no family Y' of k-sets in $\{1, 2, ..., n\}$ satisfying property P with $Y \subsetneq Y'$, then we say that Y is a maximal family satisfying property P .

Conjecture 1 (Erdos-Rado Conjecture). For all r there exists a constant C_r such that

$$
f(k,r) \leq C_r^k.
$$

In his first blog post^{[1](#page-0-0)} on the 10th POLYMATH project Gil Kalai asked several questions. Kalai's second question suggests the following conjecture.

Conjecture 2. For all r there exists a constant C_r such that

$$
f(k, r, m, n) \le C_r^k {n-m \choose k-m}.
$$

This short note shows the following.

Theorem 3. Let k, r, m, n be nonnegative integers such that $0 \le m \le k$ and $n \ge m(k-m) {2k-m \choose m+1} + m$. We have

$$
f(k, r, m, n) \le 10g(k, r, m, n)^3 {n-m \choose k-m} \le 10f(k, r)^3 {n-m \choose k-m}.
$$

Proposition 4. Let Y be a family of k-sets of $\{1, 2, ..., n\}$ with property $P(k, r, m)$ and $n \ge m(k-m) {2k-m \choose m+1}$ m. Let Y_0 be a subset of Y, which is a maximal family satisfying property $Q(k, r, m)$. Define Y_1 by

 $Y_1 = \{y \in Y : \text{ } ex. \text{ } z_1, z_2 \in Y_0 \text{ with } |y \cap (z_1 \cup z_2)| > m\}.$

Let $Y_2 = Y \setminus (Y_0 \cup Y_1)$. Then the following holds:

- (a) $|Y_0| \le g(k, r, m, n)$.
- (b) $|Y_1| \le g(k, r, m, n)^2 {n-m \choose k-m},$

¹<https://gilkalai.wordpress.com/2015/11/03/polymath10-the-erdos-rado-delta-system-conjecture/>

(c) For all $y \in Y_2$ there exist $a z \in Y_0$ such that $|y \cap z| = m$.

Proof. Claim (a) is trivial.

We have $|Y_0|^2$ possibilities for choosing $z_1, z_2 \in Y_0$. At most $\binom{2k}{m+1}\binom{n-m-1}{k-m-1}$ sets y with k elements satisfy $|y \cap (z_1 \cup z_2)| > m$. For $n \ge (k-m) {2k \choose m+1} + m$ we have

$$
\binom{2k}{m+1}\binom{n-m-1}{k-m-1} \leq \binom{n-m}{k-m},
$$

so (b) follows.

Now let $y \in Y_2$.

If for all $z \in Y_0$ we have $|y \cap z| < m$, then $Y_0 \cup \{y\}$ has property $Q(k, r, m)$ (as Y has property $P(k, r, m)$). This contradicts the maximality of Y₀. Hence, we find a $z \in Y_0$ with $|y \cap z| \ge m$. If $|y \cap z| > m$, then $y \in Y_1$, so $|y \cap z| = m$. Hence, (c) follows. \Box

Proof of Theorem [3.](#page-0-1) Let Y be a family of k-sets of $\{1, 2, ..., n\}$ with property $P(k, r, m)$ as in Proposition [4.](#page-0-2) Define Y_0, Y_1, Y_2 as in Proposition [4.](#page-0-2)

For $z \in Y_0$ let Z^z be the set of elements of Y_2 , which meet z in m elements. As Z^z satisfies property $P(k, r, m)$, we can choose $Z_0^z \subseteq Z^z$ as a maximal family satisfying property $Q(k, r, k)$. Define Z_1^z by

 $Z_1^z = \{ y \in Z^z : \text{ ex. } z_1, z_2 \in Z_0^z \text{ with } |y \cap (z_1 \cup z_2)| > m \},$

and Z_2^z as $Z \setminus (Z_0^z \cup Z_1^z)$. By Proposition [4](#page-0-2) (a) and (b) we obtain

$$
|Z_0^z| \le g(k, r, m, n), \qquad |Z_1^z| \le g(k, r, m, n)^2 \binom{n-m}{k-m}.
$$

Let $z' \in Z_0^z$, Let $Z^{z,z'}$ be the set of elements of Z_2^z , which meet z' in exactly m elements. As $Z^{z,z'} \subseteq Z^z$, all $y \in Z^{z,z'}$ meet z and z' in m elements. As $z' \in Z^z$, $|z \cap z'| = m$. Hence, if $|y \cap z \cap z'| = i$, then $|y \cap (z \triangle z')| = 2(m - i)$. For given intersections of y with $z \cap z'$ and $z \triangle z'$, we have $\binom{n-2k+m}{k-2m+i}$ choices for y left. Hence,

$$
|Z^{z,z'}| \leq \sum_{i=0}^{m} {m \choose i} {2(k-m) \choose 2(m-i)} {n-2k+m \choose k-2m+i}
$$

= ${n-m \choose k-m} + \sum_{i=0}^{m-1} {m \choose i} {2(k-m) \choose 2(m-i)} {n-2k+m \choose k-2m+i}$

$$
\leq {n-m \choose k-m} + m {2k-m \choose m+1} {n-m-1 \choose k-m-1}
$$

$$
\leq 2{n-m \choose k-m}
$$

for $n \ge m(k-m) \binom{2k-m}{m+1} + m$. We obtain

> $|Z^z| = |Z_0^z| + |Z_1^z| + |Z_2^z|$ $\leq |Z_0^z| + |Z_0^z|^2 \binom{n-m}{k-m}$ $k - m$ $\binom{n-m}{k+m}$ $k - m$ L. $\leq g(k, r, m, n) \left(1 + (g(k, r, m, n) + 2) \binom{n - m}{r} \right)$ $\binom{n-m}{k-m}$.

Hence,

$$
|Y| = |Y_0| + |Y_1| + |Y_2|
$$

\n
$$
\leq |Y_0| + |Y_0|^2 {n-m \choose k-m} + |Y_0| \cdot g(k, r, m, n) \left(1 + (g(k, r, m, n) + 2) {n-m \choose k-m} \right)
$$

\n
$$
\leq 10g(k, r, m, n)^3 {n-m \choose k-m} \leq 10f(k, r)^3 {n-m \choose k-m}.
$$

 \Box

Corollary 5. If the Erdős-Rado Conjecture is true, then Conjecture [2](#page-0-3) is true for $n \ge m(k-m) \binom{2k-m}{m+1} + m$.

Proof. If the Erdős-Rado conjecture is true, then for all r there exists a constant C_r such that $f(k,r) \leq C_r^k$. Let $C'_r = 10C_r^3$. By Proposition [4,](#page-0-2)

$$
f(k, r, m, n) \le 10 f(k, r)^3 {n-m \choose k-m} \le 10 (C_r^3)^k {n-m \choose k-m}
$$

$$
\le 10 (C'_r/10)^k {n-m \choose k-m} \le C_r'^k {n-m \choose k-m}.
$$

Remark 6. 1. It should be easy to improve many constants in the result.

- 2. I believe that very similar arguments should establish inequalities between $f(k, r, m, n)$ and $f(k, r, m', n)$ (instead of $f(k, r, k, n)$).
- 3. Considering $g(k, r, m, n)$ on its own might be interesting.
- 4. The argument is for large n. I would guess that simple arguments can extend the main result to something like $n \geq \binom{2k-m}{m+1}$. Anything beyond that would be very interesting.